
The MIPS R2000 Instruction Set

Arithmetic and Logical Instructions

In all instructions below, Src2 can either be a register or an immediate value (a 16 bit integer). The
immediate forms of the instructions are only included for reference. The assembler will translate the
more general form of an instruction (e.g., add) into the immediate form (e.g., addi) if the second
argument is constant. Instructions marked with a dagger (†) are pseudoinstructions.

abs Rdest, Rsrc Absolute Value †

Put the absolute value of the integer from register Rsrc in register Rdest.

add Rdest, Rsrc1, Src2 Addition (with overflow)
addi Rdest, Rsrc1, Imm Addition Immediate (with overflow)
addu Rdest, Rsrc1, Src2 Addition (without overflow)
addiu Rdest, Rsrc1, Imm Addition Immediate (without overflow)
Put the sum of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

and Rdest, Rsrc1, Src2 AND
andi Rdest, Rsrc1, Imm AND Immediate
Put the logical AND of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

div Rsrc1, Rsrc2 Divide (with overflow)
divu Rsrc1, Rsrc2 Divide (without overflow)
Divide the contents of the two registers. Leave the quotient in register lo and the remainder in register
hi. Note that if an operand is negative, the remainder is unspecified by the MIPS architecture and
depends on the conventions of the machine on which SPIM is run.

div Rdest, Rsrc1, Src2 Divide (with overflow) †

divu Rdest, Rsrc1, Src2 Divide (without overflow) †

Put the quotient of the integers from register Rsrc1 and Src2 into register Rdest.

mul Rdest, Rsrc1, Src2 Multiply (without overflow) †

mulo Rdest, Rsrc1, Src2 Multiply (with overflow) †

mulou Rdest, Rsrc1, Src2 Unsigned Multiply (with overflow) †

Put the product of the integers from register Rsrc1 and Src2 into register Rdest.

mult Rsrc1, Rsrc2 Multiply
multu Rsrc1, Rsrc2 Unsigned Multiply
Multiply the contents of the two registers. Leave the low-order word of the product in register lo and
the high-word in register hi.

neg Rdest, Rsrc Negate Value (with overflow) †

negu Rdest, Rsrc Negate Value (without overflow) †

Put the negative of the integer from register Rsrc into register Rdest.

nor Rdest, Rsrc1, Src2 NOR
Put the logical NOR of the integers from register Rsrc1 and Src2 into register Rdest.

not Rdest, Rsrc NOT †

Put the bitwise logical negation of the integer from register Rsrc into register Rdest.

or Rdest, Rsrc1, Src2 OR
ori Rdest, Rsrc1, Imm OR Immediate
Put the logical OR of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

rem Rdest, Rsrc1, Src2 Remainder †

remu Rdest, Rsrc1, Src2 Unsigned Remainder †

Put the remainder from dividing the integer in register Rsrc1 by the integer in Src2 into register
Rdest. Note that if an operand is negative, the remainder is unspecified by the MIPS architecture and
depends on the conventions of the machine on which SPIM is run.

rol Rdest, Rsrc1, Src2 Rotate Left †

ror Rdest, Rsrc1, Src2 Rotate Right †

Rotate the contents of register Rsrc1 left (right) by the distance indicated by Src2 and put the result
in register Rdest.

sll Rdest, Rsrc1, Src2 Shift Left Logical
sllv Rdest, Rsrc1, Rsrc2 Shift Left Logical Variable
sra Rdest, Rsrc1, Src2 Shift Right Arithmetic
srav Rdest, Rsrc1, Rsrc2 Shift Right Arithmetic Variable
srl Rdest, Rsrc1, Src2 Shift Right Logical
srlv Rdest, Rsrc1, Rsrc2 Shift Right Logical Variable
Shift the contents of register Rsrc1 left (right) by the distance indicated by Src2 (Rsrc2) and put the
result in register Rdest.

sub Rdest, Rsrc1, Src2 Subtract (with overflow)
subu Rdest, Rsrc1, Src2 Subtract (without overflow)
Put the difference of the integers from register Rsrc1 and Src2 into register Rdest.

xor Rdest, Rsrc1, Src2 XOR
xori Rdest, Rsrc1, Imm XOR Immediate
Put the logical XOR of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

Constant-Manipulating Instructions

li Rdest, Imm Load Immediate †

Move the immediate imm into register Rdest.

lui Rdest, Imm Load Upper Immediate
Load the lower halfword of the immediate imm into the upper halfword of register Rdest. The lower
bits of the register are set to 0.

Comparison Instructions

In all instructions below, Src2 can either be a register or an immediate value (a 16 bit integer).

seq Rdest, Rsrc1, Src2 Set Equal †

Set register Rdest to 1 if register Rsrc1 equals Src2 and to be 0 otherwise.

sge Rdest, Rsrc1, Src2 Set Greater Than Equal †

sgeu Rdest, Rsrc1, Src2 Set Greater Than Equal Unsigned †

Set register Rdest to 1 if register Rsrc1 is greater than or equal to Src2 and to 0 otherwise.

sgt Rdest, Rsrc1, Src2 Set Greater Than †

sgtu Rdest, Rsrc1, Src2 Set Greater Than Unsigned †

Set register Rdest to 1 if register Rsrc1 is greater than Src2 and to 0 otherwise.

sle Rdest, Rsrc1, Src2 Set Less Than Equal †

sleu Rdest, Rsrc1, Src2 Set Less Than Equal Unsigned †

Set register Rdest to 1 if register Rsrc1 is less than or equal to Src2 and to 0 otherwise.

slt Rdest, Rsrc1, Src2 Set Less Than
slti Rdest, Rsrc1, Imm Set Less Than Immediate
sltu Rdest, Rsrc1, Src2 Set Less Than Unsigned
sltiu Rdest, Rsrc1, Imm Set Less Than Unsigned Immediate
Set register Rdest to 1 if register Rsrc1 is less than Src2 (or Imm) and to 0 otherwise.

sne Rdest, Rsrc1, Src2 Set Not Equal †

Set register Rdest to 1 if register Rsrc1 is not equal to Src2 and to 0 otherwise.

Branch and Jump Instructions

In all instructions below, Src2 can either be a register or an immediate value (integer). Branch
instructions use a signed 16-bit offset field; hence they can jump 215 - 1 instructions (not bytes)
forward or 215 instructions backwards. The jump instruction contains a 26 bit address field.

b label Branch instruction †

Unconditionally branch to the instruction at the label.

bal label Branch And Link †

Unconditionally branch to the instruction at the label. Save the address of the next instruction in
register $ra.

bczt label Branch Coprocessor z True
bczf label Branch Coprocessor z False
Conditionally branch to the instruction at the label if coprocessor z condition flag is true (false).

beq Rsrc1, Src2, label Branch on Equal
Conditionally branch to the instruction at the label if the contents of register Rsrc1 equals Src2.

beqz Rsrc, label Branch on Equal Zero †

Conditionally branch to the instruction at the label if the contents of Rsrc equals 0.

bge Rsrc1, Src2, label Branch on Greater Than Equal †

bgeu Rsrc1, Src2, label Branch on GTE Unsigned †

Conditionally branch to the instruction at the label if the contents of register Rsrc1 are greater than or
equal to Src2.

bgez Rsrc, label Branch on Greater Than Equal Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are greater than or equal to
0.

bgezal Rsrc, label Branch on Greater Than Equal Zero And Link
Conditionally branch to the instruction at the label if the contents of Rsrc are greater than or equal to
0. Save the address of the next instruction in register $ra.

bgt Rsrc1, Src2, label Branch on Greater Than †

bgtu Rsrc1, Src2, label Branch on Greater Than Unsigned †

Conditionally branch to the instruction at the label if the contents of register Rsrc1 are greater than
Src2.

bgtz Rsrc, label Branch on Greater Than Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are greater than 0.

ble Rsrc1, Src2, label Branch on Less Than Equal †

bleu Rsrc1, Src2, label Branch on LTE Unsigned †

Conditionally branch to the instruction at the label if the contents of register Rsrc1 are less than or
equal to Src2.

blez Rsrc, label Branch on Less Than Equal Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are less than or equal to 0.

bgezal Rsrc, label Branch on Greater Than Equal Zero And Link
bltzal Rsrc, label Branch on Less Than And Link
Conditionally branch to the instruction at the label if the contents of Rsrc are greater or equal to 0 or
less than 0, respectively. Save the address of the next instruction in register 31.

blt Rsrc1, Src2, label Branch on Less Than †

bltu Rsrc1, Src2, label Branch on Less Than Unsigned †

Conditionally branch to the instruction at the label if the contents of register Rsrc1 are less than Src2.

bltz Rsrc, label Branch on Less Than Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are less than 0.

bne Rsrc1, Src2, label Branch on Not Equal
Conditionally branch to the instruction at the label if the contents of register Rsrc1 are not equal to
Src2.

bnez Rsrc, label Branch on Not Equal Zero †

Conditionally branch to the instruction at the label if the contents of Rsrc are not equal to 0.

j label Jump
Unconditionally jump to the instruction at the label.

jal label Jump and Link
jalr Rsrc Jump and Link Register
Unconditionally jump to the instruction at the label or whose address is in register Rsrc. Save the
address of the next instruction in register $ra.

jr Rsrc Jump Register
Unconditionally jump to the instruction whose address is in register Rsrc.

Load Instructions

la Rdest, address Load Address †

Load computed address, not the contents of the location, into register Rdest.

lb Rdest, address Load Byte
lbu Rdest, address Load Unsigned Byte
Load the byte at address into register Rdest. The byte is sign-extended by the lb, but not the lbu,
instruction.

ld Rdest, address Load Double-Word †

Load the 64-bit quantity at address into registers Rdest and Rdest + 1.

lh Rdest, address Load Halfword
lhu Rdest, address Load Unsigned Halfword
Load the 16-bit quantity (halfword) at address into register Rdest. The halfword is sign-extended
by the lh, but not the lhu, instruction

lw Rdest, address Load Word †

Load the 32-bit quantity (word) at address into register Rdest.

lwcz Rdest, address Load Word Coprocessor
Load the word at address into register Rdest of coprocessor z (0-3).

lwl Rdest, address Load Word Left
lwr Rdest, address Load Word Right
Load the left (right) bytes from the word at the possibly-unaligned address into register Rdest.

ulh Rdest, address Unaligned Load Halfword †

ulhu Rdest, address Unaligned Load Halfword Unsigned †

Load the 16-bit quantity (halfword) at the possibly-unaligned address into register Rdest. The
halfword is sign-extended by the ulh, but not the \bf ulhu, instruction

ulw Rdest, address Unaligned Load Word †

Load the 32-bit quantity (word) at the possibly-unaligned address into register Rdest.

Store Instructions

sb Rsrc, address Store Byte
Store the low byte from register Rsrc at address .

sd Rsrc, address Store Double-Word †

Store the 64-bit quantity in registers Rsrc and Rsrc + 1 at address .

sh Rsrc, address Store Halfword
Store the low halfword from register Rsrc at address .

sw Rsrc, address Store Word
Store the word from register Rsrc at address .

swcz Rsrc, address Store Word Coprocessor
Store the word from register Rsrc of coprocessor z at address .

swl Rsrc, address Store Word Left
swr Rsrc, address Store Word Right
Store the left (right) bytes from register Rsrc at the possibly-unaligned address.

ush Rsrc, address Unaligned Store Halfword †

Store the low halfword from register Rsrc at the possibly-unaligned address.

usw Rsrc, address Unaligned Store Word †

Store the word from register Rsrc at the possibly-unaligned address.

Data Movement Instructions

move Rdest, Rsrc Move †

Move the contents of Rsrc to Rdest.

The multiply and divide unit produces its result in two additional registers, hi and lo. These instruc-
tions move values to and from these registers. The multiply, divide, and remainder instructions de-
scribed above are pseudoinstructions that make it appear as if this unit operates on the general
registers and detect error conditions such as divide by zero or overflow.

mfhi Rdest Move From hi
mflo Rdest Move From lo
Move the contents of the hi (lo) register to register Rdest.

mthi Rsrc Move To hi
mtlo Rsrc Move To lo
Move the contents register Rsrc to the hi (lo) register.

Coprocessors have their own register sets. These instructions move values between these registers
and the CPU's registers.

mfcz Rdest, CPsrc Move From Coprocessor z
Move the contents of coprocessor z's register CPsrc to CPU register Rdest.

mfc1.d Rdest, FRsrc1 Move Double From Coprocessor 1 †

Move the contents of floating point registers FRsrc1 and FRsrc1 + 1 to CPU registers Rdest and
Rdest + 1.

mtc1.d Rsrc, FRdest1 Move Double To Coprocessor 1 †

Move the contents of CPU registers Rsrc and Rsrc + 1 to floating point registers FRdest1 and
FRdest1 + 1.

mtcz Rsrc, CPdest Move To Coprocessor z
Move the contents of CPU register Rsrc to coprocessor z's register CPdest.

Floating Point Instructions

The MIPS has a floating point coprocessor (numbered 1) that operates on single precision (32-bit) and
double precision (64-bit) floating point numbers. This coprocessor has its own registers, which are
numbered $f0 - $f31. Because these registers are only 32-bits wide, two of them are required to
hold doubles. To simplify matters, floating point operations only use even-numbered registers - inclu-
ding instructions that operate on single floats.
Values are moved in or out of these registers a word (32-bits) at a time by lwc1, swc1, mtc1, and
mfc1 instructions described above or by the l.s, l.d, s.s, and s.d pseudoinstructions described
below. The flag set by floating point comparison operations is read by the CPU with its bc1t and
bc1f instructions. In all instructions below, FRdest, FRsrc1, FRsrc2, and FRsrc are floating
point registers (e.g., $f2).

abs.d FRdest, FRsrc Floating Point Absolute Value Double
abs.s FRdest, FRsrc Floating Point Absolute Value Single
Compute the absolute value of the floating float double (single) in register FRsrc and put it in register
FRdest.

add.d FRdest, FRsrc1, FRsrc2 Floating Point Addition Double
add.s FRdest, FRsrc1, FRsrc2 Floating Point Addition Single
Compute the sum of the floating float doubles (singles) in registers FRsrc1 and FRsrc2 and put it in
register FRdest.

c.eq.d FRsrc1, FRsrc2 Compare Equal Double
c.eq.s FRsrc1, FRsrc2 Compare Equal Single
Compare the floating point double (single) in register FRsrc1 against the one in FRsrc2 and set the
floating point condition flag true if they are equal.

c.le.d FRsrc1, FRsrc2 Compare Less Than Equal Double (w/ exept.)
c.le.s FRsrc1, FRsrc2 Compare Less Than Equal Single (w/ exept.)
Compare the floating point double (single) in register FRsrc1 against the one in FRsrc2 and set the
floating point condition flag true if the first is less than or equal to the second. Cause exeption 14 if
FRsrc1 or FRsrc2 contains an invalid floating point number.

c.lt.d FRsrc1, FRsrc2 Compare Less Than Double (w/ exept.)
c.lt.s FRsrc1, FRsrc2 Compare Less Than Single (w/ exept.)
Compare the floating point double (single) in register FRsrc1 against the one in FRsrc2 and set the
condition flag true if the first is less than the second. Cause exeption 14 if FRsrc1 or FRsrc2
contains an invalid floating point number.

c.nge.d FRsrc1, FRsrc2 Compare Not Greater Than Equal Double (w/ exept.)
c.nge.s FRsrc1, FRsrc2 Compare Not Greater Than Equal Single (w/ exept.)
Compare the floating point double (single) in register FRsrc1 against the one in FRsrc2 and set the
condition flag true if the first is not greater or equal than the second or if FRsrc1 or FRsrc2 is an
invalid floating point number. Cause exeption 14 if FRsrc1 or FRsrc2 contains an invalid floating
point number.

c.ngle.d FRsrc1, FRsrc2 Compare Not Greater or Less Than Equal Double (w/ exept.)
c.ngle.s FRsrc1, FRsrc2 Compare Not Greater or Less Than Equal Single (w/ exept.)
Set the condition flag true if the floating point double (single) in register FRsrc1 or FRsrc2 contains
an invalid floating point number. Cause exeption 14 if FRsrc1 or FRsrc2 contains an invalid floating
point number.

c.ngl.d FRsrc1, FRsrc2 Compare Not Greater or Less Than Double (w/ exept.)
c.ngl.s FRsrc1, FRsrc2 Compare Not Greater or Less Than Single (w/ exept.)
Compare the floating point double (single) in register FRsrc1 against the one in FRsrc2 and set the
condition flag true if the first is not greater or less than the second or if FRsrc1 or FRsrc2 contains
an invalid floating point number. Cause exeption 14 if FRsrc1 or FRsrc2 contains an invalid floating
point number.

c.ngt.d FRsrc1, FRsrc2 Compare Not Greater Than Double (w/ exept.)
c.ngt.s FRsrc1, FRsrc2 Compare Not Greater Than Single (w/ exept.)
Compare the floating point double (single) in register FRsrc1 against the one in FRsrc2 and set the
condition flag true if the first is not greater than the second or if FRsrc1 or FRsrc2 contains an
invalid floating point number. Cause exeption 14 if FRsrc1 or FRsrc2 contains an invalid floating
point number.

c.ole.d FRsrc1, FRsrc2 Compare Less Than Equal Double
c.ole.s FRsrc1, FRsrc2 Compare Less Than Equal Single
Compare the floating point double (single) in register FRsrc1 against the one in FRsrc2 and set the
floating point condition flag true if the first is less than or equal to the second.

c.olt.d FRsrc1, FRsrc2 Compare Less Than Double
c.olt.s FRsrc1, FRsrc2 Compare Less Than Single
Compare the floating point double (single) in register FRsrc1 against the one in FRsrc2 and set the
condition flag true if the first is less than the second.

c.seq.d FRsrc1, FRsrc2 Compare Equal Double (w/ exept.)
c.seq.s FRsrc1, FRsrc2 Compare Equal Single (w/ exept.)
Compare the floating point double (single) in register FRsrc1 against the one in FRsrc2 and set the
floating point condition flag true if they are equal. Cause exeption 14 if FRsrc1 or FRsrc2 contains
an invalid floating point number.

c.sf.d FRsrc1, FRsrc2 Set False Double (w/ exept.)
c.sf.s FRsrc1, FRsrc2 Set False Single (w/ exept.)
Set the condition flag false. Cause exeption 14 if FRsrc1 or FRsrc2 contains an invalid floating point
number.

c.f.d FRsrc1, FRsrc2 Set False Double
c.f.s FRsrc1, FRsrc2 Set False Single
Set the condition flag false. The contents of FRsrc1 or FRsrc2 are meaningless.

c.ueq.d FRsrc1, FRsrc2 Compare Unordered or Equal Double
c.ueq.s FRsrc1, FRsrc2 Compare Unordered or Equal Single
Compare the floating point double (single) in register FRsrc1 against the one in FRsrc2 and set the
floating point condition flag true if they are equal or if FRsrc1 or FRsrc2 contains an invalid floating
point number.

c.ule.d FRsrc1, FRsrc2 Compare Unordered or Less Than Equal Double
c.ule.s FRsrc1, FRsrc2 Compare Unordered or Less Than Equal Single
Compare the floating point double (single) in register FRsrc1 against the one in FRsrc2 and set the
floating point condition flag true if the first is less than or equal to the second or if FRsrc1 or FRsrc2
contains an invalid floating point number.

c.ult.d FRsrc1, FRsrc2 Compare Unordered or Less Than Double
c.ult.s FRsrc1, FRsrc2 Compare Unordered or Less Than Single
Compare the floating point double (single) in register FRsrc1 against the one in FRsrc2 and set the
condition flag true if the first is less than the second or if FRsrc1 or FRsrc2 contains an invalid
floating point number.

c.un.d FRsrc1, FRsrc2 Compare Unordered Double
c.un.s FRsrc1, FRsrc2 Compare Unordered Single
Set the condition flag true if FRsrc1 or FRsrc2 contains an invalid floating point number.

cvt.d.s FRdest, FRsrc Convert Single to Double
cvt.d.w FRdest, FRsrc Convert Integer to Double
Convert the single precision floating point number or integer in register FRsrc to a double precision
number and put it in register FRdest.

cvt.s.d FRdest, FRsrc Convert Double to Single
cvt.s.w FRdest, FRsrc Convert Integer to Single
Convert the double precision floating point number or integer in register FRsrc to a single precision
number and put it in register FRdest.

cvt.w.d FRdest, FRsrc Convert Double to Integer
cvt.w.s FRdest, FRsrc Convert Single to Integer
Convert the double or single precision floating point number in register FRsrc to an integer and put it
in register FRdest.

div.d FRdest, FRsrc1, FRsrc2 Floating Point Divide Double
div.s FRdest, FRsrc1, FRsrc2 Floating Point Divide Single
Compute the quotient of the floating float doubles (singles) in registers FRsrc1 and FRsrc2 and put it
in register FRdest.

l.d FRdest, address Load Floating Point Double †

l.s FRdest, address Load Floating Point Single †

Load the floating float double (single) at address into register FRdest.

li.d FRdest, Imm Load Floating Point Double Immediate †

li.s FRdest, Imm Load Floating Point Single Immediate †

Load the floating float double (single) immediate Imm (e.g. 3.141) into register FRdest.

mov.d FRdest, FRsrc Move Floating Point Double
mov.s FRdest, FRsrc Move Floating Point Single
Move the floating float double (single) from register FRsrc to register FRdest.

mul.d FRdest, FRsrc1, FRsrc2 Floating Point Multiply Double
mul.s FRdest, FRsrc1, FRsrc2 Floating Point Multiply Single
Compute the product of the floating float doubles (singles) in registers FRsrc1 and FRsrc2 and put it
in register FRdest.

neg.d FRdest, FRsrc Negate Double
neg.s FRdest, FRsrc Negate Single
Negate the floating point double (single) in register FRsrc and put it in register FRdest.

s.d FRdest, address Store Floating Point Double †

s.s FRdest, address Store Floating Point Single †

Store the floating float double (single) in register FRdest at address.

sub.d FRdest, FRsrc1, FRsrc2 Floating Point Subtract Double
sub.s FRdest, FRsrc1, FRsrc2 Floating Point Subtract Single
Compute the difference of the floating float doubles (singles) in registers FRsrc1 and FRsrc2 and put
it in register FRdest.

Exception and Trap Instructions

rfe Return From Exception
Restore the Status register.

syscall System Call
Register $v0 contains the number of the system call provided by SPIM.

break n Break
Cause exception n. Exception 1 is reserved for the debugger.

nop No operation †

Do nothing.

